skip to main content


Search for: All records

Creators/Authors contains: "Thomas, E. K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Quantitative temperature reconstructions from lacustrine organic geochemical proxies including branched glycerol dialkyl glycerol tetraethers (brGDGTs) and alkenones provide key constraints on past continental climates. However, estimation of air temperatures from proxies can be impacted by non‐stationarity in the relationships between seasonal air and water temperatures, a factor not yet examined in strongly seasonal high‐latitude settings. We pair downcore analyses of brGDGTs and alkenones measured on the same samples through the Holocene with forward‐modeled proxy values based on thermodynamic lake model simulations for a western Greenland lake. The measured brGDGT distributions suggest that stable autochthonous (aquatic) production overpowers allochthonous inputs for most samples, justifying the use of the lake model to interpret temperature‐driven changes. Conventional calibration of alkenones (detected only after 5.5 thousand years BP) suggests substantially larger temperature variations than conventional calibration of brGDGTs. Comparison of proxy measurements to forward‐modeled values suggests variations in brGDGT distributions monotonically reflect multi‐decadal summer air temperatures changes, although the length of the ice‐free season dampens the influence of air temperatures on water temperatures. Drivers of alkenone variability remain less clear; potential influences include small changes in the seasonality of proxy production or biases toward specific years, both underlain by non‐linearity in water‐air temperature sensitivity during relevant seasonal windows. We demonstrate that implied temperature variability can differ substantially between proxies because of differences in air‐water temperature sensitivity during windows of proxy synthesis without necessitating threshold behavior in the lake or local climate, and recommend that future studies incorporate lake modeling to constrain this uncertainty.

     
    more » « less
  2. Abstract

    The Kuroshio Current (KC) and Kuroshio Current Extension (KCE) form a western boundary current as part of the North Pacific Subtropical Gyre. This current plays an important role in regulating weather and climate dynamics in the Northern Hemisphere in part by controlling the delivery of moisture to the lower atmosphere. Previous studies indicate the KCE responded dynamically across glacial and interglacial periods throughout the Pliocene‐Pleistocene. However, the response of the KCE during Pleistocene super‐interglacials has not been examined in detail. We present a ∼2.2 Ma record of X‐ray fluorescence elemental data from Ocean Drilling Program Hole 1207A and employ hierarchical clustering techniques to demonstrate paleoenvironmental changes around the KCE. Time‐frequency analysis identifies significant heterodyne frequencies, which suggests there were nonlinear interactions between high‐latitude and low‐latitude climate regulating expansion and contraction of the North Pacific Subtropical Gyre prior to the onset of the Mid‐Pleistocene Climate Transition (MPT). We observe two periods of elevatedlnCa/Ti, which may represent sustained warmth with northward migrations of the KCE in the northwestern Pacific. These intervals correspond to Marine Isotope Stages 29‐25, 15, and 11‐9 and occur around recent climatic transitions, the MPT and Mid‐Brunhes Event. Northward expansion of the subtropical gyre during these exceptionally warm interglacials would have delivered more heat and moisture to the high latitudes of the northwest Pacific. Furthermore, enhanced evaporation from the warm KCE vented to the lower atmosphere may have preconditioned the Northern Hemisphere for ice volume growth during two of the most recent periods of climate transition.

     
    more » « less
  3. Abstract

    Increased precipitation in the Arctic is a robust feature across model simulations of the coming century, driven by intensification of meridional moisture transport and enhanced local evaporation in the absence of sea ice. These mechanisms are associated with distinct, seasonal, spatial, and, likely, precipitation isotope (δ2HPrecip) expressions. Historical observations of δ2HPrecipreveal a contrast in seasonality between southwestern and northwestern coastal Greenland: δ2HPrecipin northwestern Greenland varies in phase with local temperature, whereas δ2HPrecipin southwestern Greenland is decoupled from local temperature and exhibits little seasonal variation. We test the hypothesis that reduced δ2HPrecipseasonality in southwestern Greenland relative to northwestern Greenland results from dynamic moisture source variations, by diagnosing monthly average moisture sources to three sink regions (Kangilinnguit, Ilulissat, and Qaanaaq) using the Water Accounting Model‐2layers model. All domains demonstrate strong intra‐annual moisture source variations. Moisture to the southernmost region is sourced most remotely in summer and most locally in winter, associated with stronger cooling from the source in summer than winter, promoting more negative δ2HPrecipand counteracting local temperature‐driven seasonality. In comparison, moisture transport distance to the northernmost region is relatively constant, as local sea ice restricts northward migration of the winter moisture source. We simulate seasonal patterns in δ2HPrecipin a simple Rayleigh model, which confirm the importance of source temperature and starting isotopic compositions in determining δ2HPrecipfor these regions. δ2HPrecipsensitivity to moisture source variability suggests these coastal Arctic settings may yield paleoclimate records sensitive to the moisture transport processes predicted to amplify future precipitation.

     
    more » « less
  4. Abstract

    Lacustrine δ2H and δ18O isotope proxies are powerful tools for reconstructing past climate and precipitation changes in the Arctic. However, robust paleoclimate record interpretations depend on site‐specific lake water isotope systematics, which are poorly described in the eastern Canadian Arctic due to insufficient modern lake water isotope data. We use modern lake water isotopes (δ18O and δ2H) collected between 1994–1997 and 2017–2021 from a transect of sites spanning a Québec‐to‐Ellesmere Island gradient to evaluate the effects of inflow seasonality and evaporative enrichment on the δ2H and δ18O composition of lake water. Four lakes near Iqaluit, Nunavut sampled biweekly through three ice‐free seasons reflect mean annual precipitation isotopes with slight evaporative enrichment. In a 23° latitudinal transect of 181 lakes, through‐flowing lake water δ2H and δ18O fall along local meteoric water lines. Despite variability within each region, we observe a latitudinal pattern: southern lakes reflect mean annual precipitation isotopes, whereas northern lakes reflect summer‐biased precipitation isotopes. This pattern suggests that northern lakes are more fully flushed with summer precipitation, and we hypothesize that this occurs because the ratio of runoff to precipitation increases with latitude as vegetation cover decreases. Therefore, proxy records from through‐flowing lakes in this region should reflect precipitation isotopes with minimal influence of evaporation, but vegetation changes in lake catchments across a latitudinal transect and through geologic time may influence the seasonality of lake water isotopic compositions. Thus, we recommend that future lake water isotope proxy records are considered in context with temperature and ecological proxy records.

     
    more » « less
  5. Abstract

    Arctic precipitation is predicted to increase this century. Records of past precipitation seasonality provide baselines for a mechanistic understanding of the dynamics controlling Arctic precipitation. We present an approach to reconstruct Arctic precipitation seasonality using stable hydrogen isotopes (δ2H) of aquatic plant waxes in neighboring lakes with contrasting water residence times and present a case study of this approach in two lakes on western Greenland. Residence time calculations suggest that growing season lake water δ2H in one lake reflects summer precipitation δ2H, while the other reflects amount‐weighted annual precipitation δ2H and evaporative enrichment. Aquatic plant wax δ2H in the “summer lake” is relatively constant throughout the Holocene, perhaps reflecting competing effects of local summer warmth and increased distal moisture transport due to a strengthened latitudinal temperature gradient. In contrast, aquatic plant wax δ2H in the “mean annual lake” is 100‰2H depleted from 6 to 4 ka relative to the beginning and end of the record. Because there are relatively minor changes in summer precipitation δ2H, we interpret the 100‰2H depletion in mean annual precipitation to reflect an increase in winter precipitation amount, likely accompanied by changes in winter precipitation δ2H and decreased evaporative enrichment. Thus, unlike the “summer lake,” the “mean annual lake” records changes in winter precipitation. This dual‐lake approach may be applied to reconstruct past changes in precipitation seasonality at sites with strong precipitation isotope seasonality and minimal lake water evaporative enrichment.

     
    more » « less
  6. Paper was published in Earth System Science Data Discussions on Feb 5, 2020. 
    more » « less
  7. Abstract

    The last deglaciation in northern Europe provides an opportunity to study the hydrologic component of abrupt climate shifts in a region with complex interactions between ice sheets and oceanic and atmospheric circulation. We use leaf wax hydrogen isotopes (δ2H) to reconstruct summer precipitation δ2H and aridity in southwestern Norway from 15.8 to 11.5 ka. We identify transitions to a more proximal moisture source before the ends of Heinrich Stadial 1 and the Younger Dryas, prior to local warming and increased primary productivity in both instances. We infer these changes in moisture delivery to southwestern Norway to be a response to northward shifts in the polar front caused by warm water intrusion into the North Atlantic, which preceded abrupt warming in the circum‐North Atlantic. These results suggest that moisture transport pathways shift northward as warm surface ocean water reaches higher latitudes in the North Atlantic.

     
    more » « less